OXIDATION OF 2-SUBSTITUTED ALLYLSILANE TO CONJUGATED ENAL USING HYPERVALENT ORGANOTODINE COMPOUND AND SYNTHESIS OF \alpha-METHYLENE \gamma- AND \delta-LACTONES

Masahito Ochiai and Eiichi Fujita*

Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan

Masao Arimoto and Hideo Yamaguchi

Osaka College of Pharmacy, Matsubara, Osaka-Fu 580, Japan

Summary: 2-Substituted allyIsilanes $\tilde{1}$ on treatment with iodosobenzene and boron trifluoride etherate in dioxane afforded conjugated enals $\tilde{2}$ directly in good yield, from which α -methylene γ - and δ -lactones 7 were synthesized.

Allylsilanes have been shown to be versatile intermediates in organic synthesis. 1 Their oxidation, however, has been little studied. 2 , 3 Oxidation of allylsilanes to allyl alcohols with organic peracids does not seem to be a highly applicable reaction. 3 Phenylthio- or phenylselenodesilylation of allylsilanes followed by oxidative rearrangement of the resulting allylsulfides or allylselenides to give allyl alcohols has been shown to be an effective process. 3 , 4 We wish to report a new useful direct oxidation of 2-substituted allylsilanes 1 to conjugated enals 2 with hypervalent organoiodine compound.

Hypervalent organoiodine compounds have been known as mild oxidizing reagents; oxidation of alcohols, carbonyl compounds, sulfides, and ketenes has been published. Allylsilanes 1 on treatment with iodosobenzene (2 equiv.) activated by the coordination with boron trifluoride etherate (BF₃-Et₂0) (1 equiv.) in dry dioxane afforded conjugated enals 2 in good yield. Representative results are indicated in Table 1.

In this reaction, the formation of iodobenzene was usually observed on TLC. $^{8}\,$ The use of

Allylsilane ^b	1 ~	Conjugated Enal	2	Yield, % ^C
Ac0 SiMe3	la ~~	Ac0 CHO	2a ~~	63
SiMe ₃	lb ∼~	OAc CHO	2b ~~	72
SiM	e ₃	OAC CHO	2c 2	71
C_6H_5 AcO $SiMe_3$	ld ~	C ₆ H ₅ Ac0 CHO	2d ~~	65
Ac0 SiMe3	le ~~	CHO CHO	2e ~~	63

Table 1 Oxidation of Allylsilanes to Conjugated Enals with Iodosobenzene and BF₃-Et₂0^a

a) To a stirred suspension of allylsilane 1 and iodosobenzene (2 equiv.) in dry dioxane (ca. 250 ml/mmol of 1) was added BF $_3$ -Et $_2$ 0 (1 equiv.) dropwise at room temperature in nitrogen; the mixture was stirred for 12 hr. After adding ice-cooled aqueous NaHCO $_3$ solution, the mixture was extracted with ether. The extract was washed with brine and dried. Evaporation gave after preparative TLC (hexane-ethyl acetate, 5 \sim 7 : 1) pure conjugated enal 2. b) For preparation of la and lb-le, see ref. 7 and 6, respectively. c) Isolated yield.

ether as the solvent instead of dioxane afforded a complex mixture of the products. Chemoselectivity of the reaction was observed: the isolated double bond was kept intact (see $\underbrace{1e}_{\sim} \rightarrow \underbrace{2e}_{\sim}$). Allyl-germane $\underbrace{3}_{\sim}$ was also oxidized in a same manner, but enal $\underbrace{2d}_{\sim}$ was obtained in only 30% yield.

The activation of iodosobenzene by the coordination of BF_3 - Et_20 to its oxygen atom seems to be very important, because the oxidation of 1 does not proceed without BF_3 - Et_20 . In the reaction more than 2 equiv. of iodosobenzene were required. In view of these observations, the reaction sequence shown in Scheme 1 seems to be plausible.

The first step of the reaction may be the formation of the highly reactive species 4^{10} as a transient intermediate, which will be attacked by the nucleophilic oxygen of another molecule of iodosobenzene to give 5.11 Decomposition of 5 produces enal 2.12

Conjugated enals 2 were smoothly coverted to α -methylene γ - and δ -lactones 7.4^{b} The

Table 2 Synthesis of α -Methylene γ - and δ -Lactones from Conjugated Enals

Enal	α,β-Unsaturated Acid	Yield, %	γ- and δ-Lactone	Yield, %
2b ~~	~~~~~~~~~ <u>~</u> 60 ₂ H	i <u>b</u> 83		7b 72
2c ~~	0Ac CO ₂ H 6	i <u>c</u> 99		7c 70
<u>2</u> ₫	C ₆ H ₅ Aco OAc CO ₂ H 6	d 91	C ₆ H ₅	7d 59
2e ~~	Ac0 CO ₂ H 6	e 89	Živ	<u>7</u> e 76

aldehyde $\frac{2b}{13}$ on treatment with sodium chlorite in the presence of a chlorine scavenger, 2-methyl-2-butene, $\frac{13}{13}$ gave α , β -unsaturated acid $\frac{6b}{60}$ in 83% yield. Alkaline hydrolysis of $\frac{6b}{60}$ (NaOH/H $_2$ O/MeOH) followed by the treatment with dicyclohexylcarbodiimide in pyridine afforded the desired δ -lactone 7b in 72% yield. The results of the lactone synthesis are summarized in Table 2.

Thus we developed a new convenient method for the oxidation of 2-substituted allylsilanes $\underline{\mathbb{I}}$, yielding conjugated enals $\underline{\mathbb{I}}$, by using hypervalent organoiodine compound.

References and Notes

- (a) H. Sakurai, Pure Appl. Chem., 54, 1 (1982); (b) T. H. Chan and I. Fleming, Synthesis, 1979, 761; (c) M. Ochiai and E. Fujita, J. Synth. Org. Chem., Jpn., 40, 508 (1982).
- 2. J. M. Reuter, A. Sinha, and R. G. Salomon, J. Org. Chem., 43, 2438 (1978).
- (a) I. Fleming and B.-W. Au-Yeung, Tetrahedron, 37, Supplement, No. 9, 13 (1981); (b) M.
 J. Carter and I. Fleming, J. Chem. Soc., Chem. Comm., 1976, 679; (c) Epoxidations of

- allylsilanes are reported to give poorly characterized mixtures of cleavage procudts: P. F. Hudrlik and G. P. Withers, *Tetrahedron Lett.*, 1976, 29.
- (a) H. Nishiyama, K. Itagaki, K. Sakuta, and K. Itoh, *Tetrahedron Lett.*, 22, 5285 (1981);
 (b) Cf. H. Nishiyama, H. Yokoyama, S. Narimatsu, and K. Itoh, *ibid.*, 23, 1267 (1982).
- (a) A. Varvoglis, Chem. Soc. Rev., 10, 377 (1981); (b) D. F. Banks, Chem. Rev., 66, 243 (1966); (c) R. B. Sandin, ibid., 32, 249 (1943): (d) T. Takaya, H. Enyo, and E. Imoto, Bull. Chem. Soc. Jpn., 41, 1032 (1968).
- 6. M. Ochiai, E. Fujita, M. Arimoto, and H. Yamaguchi, J. Chem. Soc., Chem. Comm., in press.
- 7. M. Ochiai, E. Fujita, M. Arimoto, and H. Yamaguchi, Chem. Pharm. Bull., in press.
- 8. In the oxidation of allylsilane \lim_{∞} , iodobenzene was obtained in 72% yield (GLC yield) based on iodosobenzene.
- 9. Allylsilane <u>la</u> on treatment with l equiv. of iodosobenzene gave conjugated enal <u>2a</u> in only 33% yield.
- Umemoto amd co-workers recently reported the useful perfluoroalkylations of carbanions, alkenes, arenes, and thiols with (perfluoroalkyl)phenyliodonium salts: T. Umemoto, Y. Kuriu,
 Nakayama, and O. Miyano, Tetrahedron Lett., 23, 1471 (1982) and references cited therein.
- 11. The reaction initiated by the attack of oxygen of iodosobenzene to electron deficient carbon atoms has been reported: (a) J. Wicha, A. Zarecki, and M. Kocor, *Tetrahedron Lett.*, 1973, 3635; (b) R. M. Moriarty, S. C. Gupta, H. Hu, D. R. Berenschot, and K. B. White, *J. Am. Chem. Soc.*, 103, 686 (1981).
- 12. The partial participation of the following alternative reaction sequence cannot be ruled out. Water may be produced by the condensation of trimethylsilanol during the reaction.

In fact allyl alcohol $\frac{8}{2}$ on treatment with iodosobenzene (1 equiv.) and BF_3 - Et_2^0 (1 equiv.) in dioxane at room temperature afforded enal $\frac{2b}{2}$ in 59% yield.

13. B. S. Bal, W. E. Childers, and H. W. Pinnick, Tetrahedron, 37, 2091 (1981). (Received in Japan 8 November 1982)